Why Measuring Static First Isn’t Always Productive
There is a big move in residential and light commercial HVAC toward measuring static pressure regularly during commissioning, service and maintenance. And don’t get me wrong
Measuring static pressure is VERY important
The challenge comes in when techs begin taking measurements without understanding where to take them, what they mean, or worse… they use measurements as an excuse not to do a proper visual inspection.
So before we go on, let’s cut to the chase. You need to visually inspect blower wheels, blower taps and settings, blower direction, belts, pulleys, evaporator coils, filters and condenser coils as well as look for any other abnormal return or condenser restrictions.
Do this BEFORE you take detailed measurements and you will save yourself a lot of time and heartache.
So what is “static pressure” anyway?
Think of the air side of the system like a balloon. Static Pressure is the inflating (positive) or deflating (negative) pressure against the walls of the ducts / fan coil / furnace in relationship to another point which is usually atmospheric pressure 14.7 PSIA (at sea level) or 0 PSIA.
When you blow up a balloon there is a positive pressure against all sides inside the balloon in relationship to the atmospheric pressure around the balloon.
Static Pressure in residential and light commercial HVAC is generally measured in Inches of water column. We often measure it with an accurate digital manometer zeroed out to atmospheric pressure before use.
Static Pressure is not air flow. You could have static Pressure and have no airflow whatsoever. If you think of it in electrical terms, you can read voltage (potential) between two points and have no actual movement of electrons. It is a measure of difference in energy states between two points not a measure of quantity.
If you took a blower, attached a duct to it and blocked the end of the duct with a cap and turned the blower on you would have 0 CFM of airflow in the duct and very high static pressure. The exact amount of static pressure would be based on the ability of that particular blower motor and wheel to build up pressure.
So when we are measuring static we are measuring pressure in the duct system not flow.
The more powerful the motor, the more pressure it can create and the more pressure / resistance it can overcome.
Think of a blower motor like a compressor, when it is off the pressure on both the inlet and outlet are the same. In the case of a compressor the pressure when off will be the static pressure of the refrigerant (let’s say 132 PSIG static pressure for R22 at 75° ambient) in the case of a blower it will be atmospheric pressure.
When the compressor turns on the suction pressure drops below 132 PSIG and the head pressure rises above 132 PSIG. The compressor creates this difference in pressure both above and below the static, saturated refrigerant pressure.
When a blower turns on it also drops the pressure of the return side below atmospheric pressure (14.7 PSIA) and it increases the supply side pressure above atmospheric pressure.
We measure this static pressure at various points to find out how much resistance to airflow there is at various points in the system.
For example we may measure the pressure drop across the evaporator or the filter or a particular run of duct or across a fire damper (to see if it’s slammed shut)
We also measure at the top and bottom of the appliance (furnace or fan coil) to find the Total External Static Pressure (TESP) which helps us calculate airflow when we compare to fam tables as well as helps us understand if we duct or system issues.
On a brand new, perfectly functioning system this works great.
But on an older system with a dirty blower wheel or a fan coil with a dirty coil this no longer serves its original purpose.
If the blower wheel is dirty, the blower loses its ability to move air effectively, and therefore also loses its ability to create the pressure differential between the return and supply.
We are trained to think that low static equals good and high static equals bad
In the case of a dirty blower wheel or a clogged evap on a fan coil the TESP will be LOW and there will still be low air flow (low CFM).
As far as the refrigerant circuit and capacity is concerned the static pressure is meaningless, it is all a matter of how many CFM of air are traveling over the coil surface area. We use static Pressure as a diagnostic and benchmarking tool when taken together with an understanding of the system, blower specs and settings and duct design. Static pressure by itself means very little in the same way that measuring voltage or head pressure by themselves mean very little.
The point of this article is not to downplay the importance of static pressure or to explain how to measure it. The point is to remind you of two important facts.
- Check your blower wheel, blower direction, coils, filters, blower settings and other obvious airflow restrictions and issues first.
- Before measuring your static think carefully about where you are placing your probes and what you expect to see / what you diagnosing with the measurement.
— Bryan
For a detailed explanation of static pressure you can go HERE
Or see a great video by Jim Bergmann using a Testo manometer HERE or Corbett Lundsford on static HERE